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Dynamics of polymer knots at equilibrium

Pik-Yin Lai*
Department of Physics and Center for Complex Systems, National Central University, Chung-li, Taiwan 320, Republic of Ch

~Received 3 January 2002; published 26 August 2002!

The relaxation and diffusion dynamics of knotted polymers at equilibrium under good solvent conditions are
investigated by dynamic Monte Carlo simulations. Prime knots of chain lengths up toN5240 monomers and
knots up to 20 essential crossings are studied. The relaxation dynamics of the prime knots at equilibrium do not
display the classification into group as in the case of the nonequilibrium relaxation of cut knots@Phys. Rev. E
58, R1222~1998!; Phys. Rev. Lett.87, 175503~2001!#. Furthermore, the time autocorrelation functions for the
radius of gyration of the nontrivial knots can be fitted by a sum of two exponential decays of long and short
characteristic relaxation times. These two relaxation times decrease with the number of essential crossingsC.
The faster relaxation follows the Rouse behavior and scales asN112n and its dependence onC is consistent
with the scaling analysis using the blob picture. The mean-square displacement of the center of mass of the
knots obeys the free diffusion behavior compatible with the Rouse dynamics. The diffusion coefficients of the
knots, D;1/N for large N, but D decreases for knots with increasingC. These results are analyzed using
scaling theories and discussed in terms of topological interactions in the knots.

DOI: 10.1103/PhysRevE.66.021805 PACS number~s!: 61.41.1e, 47.50.1d, 87.10.1e
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I. INTRODUCTION

Recent advances in single-molecule experimental te
niques in chemical and biological systems enable the di
manipulation of naturally occurring knotted DNA@1–4# as
well as artificially tying up a molecule into a knot@5#. Also,
Type II topoisomerases can affect the global topology of r
DNA @6,7# and the reaction rate is believed to be govern
by the intrinsic relaxation dynamics of the knotted DNA.
urges for some fundamental understanding of the phys
and dynamical properties of knotted chain molecules. On
other hand, the breakthrough of Jones polynomials@8# in
knot theory, has boosted much research interest in the
nection between physics and knot theory, especially on s
models in statistical mechanics@9,10# for the last decade
Also, there have been some advances in the emergenc
knotlike structures in quantum and classical field theor
recently@11,12#. Even then, the connection tends to be ma
ematical and abstract, still far from direct physical obser
tions. It is clear that the topological constraint in a knott
molecule dictates the important physical and geometr
properties of the knot@13–22#. In a similar way, the en-
tanglement effects in a dense polymer melt give rise to
topological interactions that govern the dynamics in po
meric systems. The constraint of no chain crossing and
chain breaking in a knot restricts the number of possi
conformations that can only appear or disappear via cont
ous chain deformations. Topological interactions are eas
picture but hard to quantify, yet they are robust and ha
good memories, even prehistoric men used knots as m
monic devices to record events and numbers before the
vention of symbols/words. These topological interactions
manifested most prominently in knots, and knotted polym
are convenient systems for studying them. The fact t
closed ring polymers possess topological memory is
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pected to hinder their relaxation motions. It is interesting
probe such pure topological effects and clarify its effects
the dynamical properties of knotted molecules. However
real experiments, these topological interactions often mix
with other interactions such as energetic interaction am
monomers and solvent or the intrinsic bond energies
chemical properties of the ring molecule. Thus it is desira
to investigate the dynamics of knotted polymers in a co
puter simulation, which is dominated by the topological i
teractions.

Our previous study on thenonequilibrium relaxation
times of prime knots revealed that knots are naturally cla
fied into group according to their characteristic times to un
when the well-equilibrated knot is cut. The Alexander po
nomials of the knots within a group can be parametrized
the same way@17,18#. It is of interest to see whether suc
classification will emerge in the dynamical properties
these knots at thermal equilibrium. Using dynamic Mon
Carlo simulations, we consider knots formed by flexib
polymers in good solvent conditions. Only excluded volum
effects and the topological constraint of no segment cross
are present in our systems. Topological effects are expe
to dominate in the dynamical properties in knots. Previo
scaling prediction for the dependence of the relaxation tim
on the essential crossing number~C! of the knot was not
satisfactorily verified in the simulation data in Ref.@16#. In
this paper, we reexamine the relaxation times of the kn
especially focusing on its dependence onC, by simulation
and scaling calculations. Various ring polymers as listed
plicitly in Table I are studied. Section II gives some bas
about knots and describes the bond-fluctuation model
simulation details. The simulation results for the autocor
lation functions and diffusion dynamics are presented in S
III. The data of the equilibrium relaxation times and diffu
sion constants are discussed by scaling analysis in term
the blob picture and inflated tube model, respectively.
nally, Sec. V gives some outlook and discussions.
©2002 The American Physical Society05-1



b

n
nd
s.
ns
te
er

Tr
in

all
re

1
a

-
an
u
le
r
e

un
qu

to
n-

d

-

r

a
in

nked
ed
ed

ond

en
no-
del
at-

ix

is-

ent
nds
n;

ally.
l is

rs.
ent
n

ec-
ith
of

age
n

e to
his

of
ise
d
nce

ns
sic

e
as a
eing
the

he

PIK-YIN LAI PHYSICAL REVIEW E 66, 021805 ~2002!
II. MODEL AND SIMULATION DETAILS

The conventional nomenclature of a knot is denoted
CK whereC is the number of essential crossings@26# in any
planar projection, i.e., the minimum number of crossings
matter how one tries to untie the knot without cutting it, a
K is just a label to distinguish topologically different knot
Two knots are topologically the same if they can be tra
formed into each other with only three kinds of Reidemeis
moves@26#. Prime knots up to ten essential crossings w
listed by Tait and Little@27,28# in the 19th century. Prime
knots are knots that are not composed of simpler knots.
ditionally, knots are just simply arranged in an increas
order ofC in usual knot tables or knot diagrams.C is a fairly
weak topological invariant and can have an exponenti
large degeneracy whenC is large. For instance, there a
seven knots with seven crossings and 9988 knots with
crossings. Advances had been made in classifying knots
topological invariants@8–10#. More sophisticated topologi
cal invariants such as Alexander, Jones polynomials,
Vassiliev invariant can distinguish knots much better, b
there is still no one-to-one correspondence for more comp
knots. For instance, 51 and 10132 have the same Alexande
polynomial. The search for an ultimate invariant for a on
to-one classification of all the knots remains one of the f
damental challenges in mathematical knot theory. The e
librium dynamics of three knot groups~see Fig. 1!, namely,

TABLE I. Values of the exponentsa of various prime knots.

Knot CK a

31 2.0160.08
41 2.3760.1
51 2.2760.1
52 2.2660.2
61 2.5860.1

FIG. 1. Knot diagrams for various knot groups in this study. T
torus knots (31,51,71 , . . . ), theeven twist knots (41,61,81 , . . . ),
and the odd twist knots (52,72,92 , . . . ).
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the torus knots (31,51,71 , . . . ), the even twist knots
(41,61,81 , . . . ) and the oddtwist knots (52,72,92 , . . . ) are
investigated in this work. These knots have been shown
classify into the above three groups in terms of their no
equilibrium relaxation times@17,18#. The numbering of the
prime knots in this study follows that of Alexander an
Briggs @29# for knot up toC59 and from Conway@30# for
knots withC510. ForC>11, a straightforward generaliza
tion in each knot group is used.

The bond fluctuation model~BFM! for macromolecular
chains@23# is employed for the polymer knots. The BFM fo
polymer chains in three dimensions@24# is a coarse-grained
lattice model in which each effective monomer occupies
cube of eight sites in a simple cubic lattice. A polymer cha
is represented by a sequence of successive monomers li
by effective bonds taken from a set of 108 allow
bond vectors from the set of all permutations obtain
by symmetry operations of the cubic lattice:$P(2,0,0),
P(2,1,0), P(2,1,1), P(2,2,1), P(3,0,0), P(3,1,0)%. Here,
P(2,0,0) denotes all the possible permutations of the b
vectors generated from~2,0,0!, which include the six bond
vectors (62,0,0), (0,62,0), and (0,0,62). The bond
lengths in the BFM can range from 2 toA10 in units of
lattice spacing. Hard-core self-avoiding interaction betwe
monomers is imposed by the requirement that no two mo
mers can share a common site. The dynamics of this mo
are introduced by choosing a monomer at random and
tempting to move it by one lattice spacing in one of s
randomly selected directions:6x, 6y, 6z. This move at-
tempt will be accepted if the following conditions are sat
fied: ~1! self-avoidance is obeyed;~2! the new bond vector
still belongs to the allowed set. Because of the requirem
that the bonds must stay in the allowed set, no two bo
will ever intersect each other in the course of the motio
hence, the entanglement effect is taken care of automatic
Because of its more realistic and simple moves, this mode
suitable for the study of dynamical properties of polyme
Also, it has been established that this model is in agreem
with the Rouse model in the dilute limit or with the reptatio
model for long chains in entangled melts@25# in three di-
mensions. The polymer chain in the BFM has a wide sp
trum of bond angles and bond lengths as compared w
conventional lattice polymer models. It has many features
an off-lattice model but at the same time has the advant
of lying on a lattice in which a fast computing algorithm ca
be implemented. Solvent molecules hit the monomers du
thermal motion and give rise to solvent viscosity and t
effect is modeled as the random Monte Carlo trials moves
the monomers. It is well established that polymers give r
to entropic elasticity@31# and the topological contraint an
entanglement in the knot restrict its conformation and he
affect the global stiffness of the knot.

A single ring polymer chain consists ofN monomers is
placed inside a cubic box with periodic boundary conditio
imposed in all three directions. There are only two ba
interactions in our model: the first is the excluded volum
effects between the monomers which can be thought of
knot having a finite cross-section thickness; the second b
the prohibition of any segment crossing in the course of
5-2
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dynamics. It is clear that the latter interaction is of stro
topological nature which guarantees that the initial knot w
remain of the same type. Different prime knots, mostly
lengths N5180 and up toN5240, of the torus knots
(31 ,51 ,71 , . . . ), even twist knots (41 ,61 ,81 , . . . ) and odd
twist knots (32 ,52 ,72 , . . . ) areinvestigated. We have mea
sured the equilibrium average contour length of these pr
knots, they are all of the same length as the linear free ch
within 0.8% indicating that the knots are far away from t
tight knot limit. Initial configurations, like those shown i
Fig. 1 are prepared manually. The knot is then well equ
brated by Monte Carlo moves for a long time, typically t
times the equilibrium relaxation time, then ensemble av
ages are taken for another extended period, typical by
times the equilibration time.

III. RESULTS ON THE EQUILIBRIUM DYNAMICS

The dynamics in thermal equilibrium for the torus kno
even twist knot and odd twist knot groups are monitor
Some of the diagrams of these knots are depicted in Fig
These initially prepared knot configurations are then w
equilibrated. The snapshots of the typical configurations
the circular unknot and theC518 even twist knot are show
in Fig. 2. The knotted polymer is smaller in size as expect
The detailed dynamics are studied by measuring the auto
relation function and the mean-square displacement of
knot. Characteristic relaxation times and diffusion coe
cients are then extracted from these quantities. Emph
shall be focused on the dependence of the relaxation and
diffusion dynamics on different knot types. All times a
measured in units of Monte Carlo steps/monomer~MCS/
monomer!, 1 MCS/monomer means on average each mo
mer has attempted to move once.

A. Time autocorrelation functions and equilibrium
relaxation times

The equilibrium relaxation behavior is studied through t
measurements of the time autocorrelation of some struct
properties of the knot, such as the radius of the gyrat
which is defined as

ARg~ t !5
^Rg~ t !Rg~0!&2^Rg&2

^Rg
2&2^Rg&

2 , ~1!

FIG. 2. Snapshots of the equilibrium configurations of an u
knot 01 ~left! and aC518 even twist knot.
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whereRg is the radius of gyration of the knot,^•••& denotes
thermal average, and timet is measured in Monte Carlo step
per monomer~MCS/monomer!. The typicalARg(t) for vari-
ous knots are shown in Figs. 3~a! and 3~b!. The correlation
function for the unknot 01 is also shown for comparison. In
general, nontrivial knots with higher values ofC decay
faster. For nontrivial knots with small values ofC ~such as
31 , 41), their initial relaxation behaviors are close to that
the unknot, however, all nontrivial knots show a long tim

-

FIG. 3. Time autocorrelation functions for the radius of gyrati
of various prime knots withN5180. t is in units of MCS/monomer.
~a! ARg for the torus knots 31,51 , . . . ; ~b! same as~a! but for the
even twist knots 41,61 , . . . ; ~c! semilog plot of the correlation
function ARg(t) for the unknot 01 and trefoil knot 31.
5-3
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tail in their correlation functions. Such a long-time-sca
slow relaxation suggests that topological constraint stron
hinder the relaxation of the nontrivial knots. Furthermo
ARg(t) in general decays faster for nontrivial knots wi
more crossings. To examine the relaxation behavior i
more quantitative way, the correlation function is plott
semilogarithmically in Fig. 3~a!. The correlation function of
the unknot 01 can be very well described by a single exp
nential decay while the other nontrivial knots, such as
trefoil (31), as shown, display a rather clear separation o
short time scale decay and a long time scale decay.
ARg(t) for the nontrivial knots can be fitted quite well by
sum of two exponential decays as

ARg~ t !5b exp~2t/ts!1~12b!exp~2t/t l !, ~2!

wherets andt l are the short and long characteristic rela
ation times, respectively, andb is the relative weight of the
shorter decay. The separation of two distinct time scale
equilibrium relaxation in knots has also been observed p
viously by Quake@16# who considered 31 ,41 ,61 ,81, and
101 knots by using another polymer model. By fittin
ARg(t)’s for different knots ofN5180, the values ofts and
t l are extracted. For the unknot, the relaxation is almos
single exponential sinceb;0.1 only. For other nontrivial
knots, although the relaxation behavior is mostly domina
by the shorter relaxation (b.0.5 in most cases!, the relax-
ation changes appreciably to the longer relaxation at l
times. Typically,t l is ;10–30 times larger thants for non-
trivial knots with C<10.

The faster relaxation time scale can be measured byts , or
even more conveniently and accurately by the half-de
time T1/2 that is defined as the time needed forARg to decay
to 1

2 . As illustrated in Fig. 3~c!, T1/2 lies well within the fast
time scale regime and reflects mainly the fast relaxation
the knot. Figure 4~a! displays the half-decay times as a fun
tion of C for various prime knots in different groups. All th
data fall roughly on the same curve suggesting that the
relaxation time is mainly determined by the essential cro
ing number of the knot. However, the detailed topology
the knot still has some observable effect on the relaxa
times, since even for knots with the sameC the 31,51,71
group always has a slightly largerT1/2 than the 52,72,92
group. ForC.15, the value ofT1/2 saturates to some mini
mal value. Our data for the fast relaxation times do not ag
with the theoretical result obtained by Quake@16# which
predicted the relaxation time scales as;N112nC2/322n

.N2.2C20.533. Our data agree with the scaling ofN112n, as
N becomes large, but deviate a lot from the scaling ofC. The
decrease ofT1/2 with C is much stronger~as compared with
Quake’s result! for small values ofC and seems to saturate
some constant for larger values ofC. Furthermore, this scal
ing exponent inC was also not satisfactorily verified by th
simulation data in Ref.@16# in which knots up to ten cross
ings were studied and fast relaxation time were fitted wit
variation of;C20.7. A plausible cause of this discrepancy
the scaling prediciton with the simulation data is further e
plored in Sec. IV. The longer relaxation times for vario
knots in three knot groups are plotted as a function ofC in
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Fig. 5~b!. t l varies somewhat irregularly withC even within
a group, especially for a smaller value ofC. However,t l

shows an average decreasing trend with increasingC.
The nature of these fast and slow relaxation behaviors

be further explored by considering the variations of the
relaxation times with the length of the knot. To examine t
chain length dependence, the autocorrelation functions of
knots 01 , 31 , 41 , 51 , 52, and 61 up to N5240 are mea-
sured. The values ofT1/2 andt l are then extracted and the
variation withN are shown in Fig. 4~b! on a log-log plot. The
fast relaxations show a very nice Rouse relaxation beha
with T1/2;N112n for the unknot forN.30. For nontrivial
knots, it appears that the finite-N correction to theN112n

becomes more significant for knots with higherC. However,
in the largeN limit, i.e., when the knots are far from bein
tight, the values ofT1/2 for different knots converge to the
same value. On the other hand, the slow relaxation time
the nontrivial knots also suggest a power law witht l ;Na,
with a knot-type-dependent exponenta. The values ofa for
these knots are displayed in Table I. The exponent of
slower relaxation timea increases withC in general. Al-
though the exponentsa show some dependence on the kn
type, their values are only somewhat greater that 112n
.2.2 suggests that the overall equilibrium relaxation pictu

FIG. 4. ~a! The half-decay timeT1/2 of ARg(t) for various prime
knots of lengthsN5180. ~b! Log-log plot of T1/2 as a function of
the knot length for the unknot and nontrivial knots. The slope of
dashed straight line is 112n'2.2.
5-4
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of the nontrivial knots can be approximately described by
Rouse model with some corrections. Presumably, such
rection originates from the topological constraint of the
sential crossings within the nontrivial knot.

The general trend of decreasing of both fast and s
relaxation times withC indicates that more complex kno
respond faster. This is due to the fact that more comp
knots are in general more compact and exhibit stiffer ela
behavior. The latter properties have also been observe
our recent simulation studies@19# on the deformation of
polymer knots.

B. Mean-square displacement and diffusion coefficients

To investigate the diffusion transport dynamics of knott
polymers, the mean-square displacement of the cente
mass position,RW cm , of the knot is monitored. Figure 6 sho
the mean-square displacements of different knots as a f
tion of time. The mean-square displacement varies line
with t indicating a free diffusion behavior for both the unkn
and nontrivial knots up to 20 crossings. However, the dif
sion is slower for knots with more essential crossings. T
self-diffusion coefficient is extracted from the mean-squ
displacement data as

FIG. 5. ~a! The slower relaxation timest l , in units of MCS/
monomer, as a function ofC for various knots.~b! Log-log plot of
t l as a function of the knot lengths. The straight lines are best
from which the values of the exponenta are obtained.
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and is plotted againstC in Fig. 7~a! for various knots.D
shows a general decreasing trend with increasingC and also
is not sensitive to the knot types. The diffusion behavior c
further be explored by examining the dependence ofD on N
as shown in Fig. 7~b! for the unknot and some nontrivia
knots. The diffusion coefficient of the unknot shows a ve
nice 1/N Rouse behavior, while for the 31 and 41, such a 1/N
behavior is also observed forN.30. ForN<60, the values
of D are smaller, this is due to the fact that when the kno
tight and the local density is higher, the local segment mot
of the knot may crossover to some kind of creeping mot
in a tube, or quasireptation behavior. However, the value
D for different knots approach the same value in the largeN
limit, thus the self-diffusion behavior follows the Rouse d
namics for knots in the asymptotic long chain limit.

IV. SCALING ANALYSIS

In this section, we attempt to understand the simulat
results in terms of scaling concepts in polymer physi
Since a detailed mathematical description of knots is stil
the level of classification, one is still far away from an

ts

FIG. 6. Mean-square displacement of the center of mass of
knot as a function of time for various knots of lengthsN5180. t is
in units of MCS/monomer.~a! Linear plot.~b! Log-log plot.
5-5
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detailed theory on the physical properties of knots and
scaling approach remains to be the most useful theore
tool at present. Using the blob picture in polymer, whi
account for the excluded volume interactions among
chain segments, the scaling form for the fast relaxation t
is derived under suitable assumptions. Furthermore, the e
monomer-monomer friction in a knotted polymer is tak
into account in the maximally inflated tube model and t
scaling behavior of diffusion coefficient can be obtained. T
value of the self-avoiding walk exponentn is taken to ben
53/5 throughout the scaling analysis.

A. Scaling of T1Õ2

Our data, such as in Fig. 4~b! suggest the fast relaxatio
times scale asN112n asymptotically. The difference inT1/2
for different knot types originates from the different fast ela
tic response times of the knots. Therefore, we plot in F
8~a! the scaled fast relaxation time of various knots as
function of the mean radius of gyration in units ofNn. The
data show a rough scaling behavior suggesting the follow
scaling form:

T1/25N112nG~^Rg&/RF!, ~4!

whereRF.aNn is the free Flory radius of the polymer und
no topological constraint, i.e., a free linear chain anda is the

FIG. 7. ~a! Diffusion constantD versusC for various knots of
lengthsN5180. ~b! Log-log plot ofD versusN for the unknot and
nontrivial knots. The dashed straight line indicates a slope of21.
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monomer size.G is some scaling function of the strain de
formation of the polymer. Thus the above scaling form su
gests that the fast relaxation time scale is basically the ela
response of the knot. The extra stiffness of the knotted po
mer as compared to the free linear polymer is given by
topological constraint of the formation of a knot, which is
turn predominantly provided by the entanglement effe
among the chain segments. Furthermore, the increase in
cluded volume interactions in a knot arises fundamenta
from the topological constraint of maintaining the knot to
of the same type which forces the polymer to rema
strongly entangled. From our data in Fig. 8~a!, G(x) is an
increasing function, this can be compare with the result
the period of oscillation of a solid elastic sphere@32# that is
proportional to the radius of the sphere. For a nontriv
prime knot ofN monomers and withC essential crossings
on average the first monomer will be close to the (N/C)th
monomer due to the topological constraints and hence ca
modeled as a blob of withN/C segments. Exploiting the ide
of the blob concept in polymer physics, the length scale
the blob size isjb'(N/C)n. The average number of blobs
C. The relaxation time within a blob scales astb
;(N/C)112n and forC@1, the relaxation of the whole kno
can be viewed as the relaxation ofC self-avoiding blobs,
thus the time needed for the relaxation to cover a reg
composed of a random walk ofC blobs is

FIG. 8. ~a! Scaling plot ofT1/2/N112n versus^Rg&/N
n for the

unknot and nontrivial knots.~b! Scaling plot ofT1/2/N112n versus
C for nontrivial knots. The dashed curve shows a 1/C1.2 behavior.
5-6
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T1/2;C112ntb;N112n'N11/5 for C@1, ~5!

which is independent ofC. On the other hand, forC
;O(1) the knot no longer has the configuration of a se
avoiding walk of blobs but rather consists of a small num
of blobs that are more or less space filling, then the ti
needed for the relaxation to propagate through the knot i
the order

T1/2;Ctb;N112nC22n'N11/5C26/5 for C;O~1!.
~6!

Again the above two scalings can be summarized in the
lowing scaling form:

T1/25N112ng~C!, ~7!

whereg(C); constant forC@1 and;C22n for C;O(1).
The above scaling form is checked by our simulation d
and the result is shown in Fig. 8~b! which should be com-
pared with the scaling functiong(C) above. ForC.13, the
data indeed settle to a constant while for smaller values oC,
the data for different values ofN do fall roughly as;C21.2

~dashed curve!. There are some scattering in the scaled d
which is due to the correction of finite-N in the exponent in
N. It should be noted that the scaling form in Eq.~7! is
consistent with the scaling forms in Eqs.~4! and ~7!; this
suggests that̂Rg&/N

n5 f (C) for some functionf that de-
creases withC and f (C); const forC@1. This scaling be-
havior of ^Rg& is also observed in our data that will be r
ported elsewhere@33,34#.

B. Maximally inflated knot and scaling of D

The relaxation motion of monomers in a knot can be p
tured as confined inside an imaginary inflated knotted tu
or the ‘‘ideal form’’ @15# of the knot. Grosberget al. @21#
introduced a new topological invariantp defined as the as
pect ratio of the length~L! to the diameter~d! of a knotted
polymer at its maximum inflated state,

p5L/d. ~8!

The diffusion coefficient of the knot can be calculated a
cording to the Einstein relation,D5kBT/m t , wherekB is the
Boltzmann’s constant andm t is the total friction coefficient.
In Rouse model@35,36#, the friction coefficient is propor-
tional to the number monomersN in the macromolecule, i.e.
Nj, wherej is the monomer-solvent friction coefficient. Fo
a linear polymer chain, the monomers tend to avoid e
other in good solvents and the probability of two monom
in direct close contact is small. However, for knotted po
mers, monomers are forced to be in close contact becau
the topological constraint. During the relaxation proce
monomers will slide onto each other, and extra friction
sults. The collision probability among the monomers
greatly increased as the number of crossings increases
estimate this extra internal friction, the monomer-monom
friction coefficient is assumed to be proportional to the ra
of length to cross-section area of the maximally inflated k
@17#. Thus the total friction coefficient can be express
02180
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-
of
,
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To
r

t
d

asm t5Nj1Lz, wherez represents the monomer-monom
friction coefficient andz.zo /d2 for some characteristic
monomer-monomer frictionzo . Following the idea on
the construction of the maximally inflated tube, Grosbe
et al. obtainedL;Rgp2/3 and d;Rgp21/3;Nnp23/5. Then
m t5Nj1zoN2np8/5 and hence

kBT

D
5Nj1

p4/3

Rg
zo . ~9!

On average,p varies linearly withC and the values ofp for
various prime knots in their ideal forms have been calcula
in Ref. @4#. By fitting the values ofp with C, we obtainp
53.78C16 and the values ofp for all the knots in this study
are then calculated using this linear relation. Figure 9 pl
1/(DN) againstp4/3/(^Rg&N) for various prime knots with
different lengths, the data collapse rather well and fall ont
straight line verifying the scaling result in Eq.~9!. One re-
covers the standard Rouse behavior ofD;1/N in Eq. ~9! for
knots with p!N ~i.e., for knots with smaller values ofC)
which agrees with the observed behavior in Fig. 7~b!. In fact,
the relationT1/2;^Rg

2&/D does not hold for polymer knots
but was used in Ref.@16# for the derivation of the scaling o
the relaxation times and hence lead to the disagreemen
the C dependence with the simulation data. In general,T1/2

,^Rg
2&/D as indicated by our simulation data. This is b

causeT1/2 is the fast relaxation time of the knot that reflec
the time scale of global elastic response, while^Rg

2&/D is the
time scale originated from the frictional drag experienced
the knot segments, which has a stronger dependence o
detailed topology and hence is in general slower thanT1/2.

V. DISCUSSIONS AND OUTLOOK

It appears that the decrease in relaxation times withC
maybe related to the increase in local density in the inte
of the knot. The interior segments in the knot experienc
local volume fractionf}Na3/^Rg&

3, and hencef increases
with C. For a system with many linear polymers, it is we
known that the relaxation behavior follows the Rouse beh

FIG. 9. A plot of 1/(DN) versusp4/3/(^Rg&N) for various types
of knots of different lengths. The dashed curve denotes the lin
behavior given in Eq.~9!.
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ior in the dilute regime forf,f* , wheref* is the volume
fraction for polymer overlapping becomes significant. Th
cross-over volume fraction scales as'f* ;N123n and
f/f* ;N3na3/^Rg&

3. From our data in Fig. 8, the mos
dense case in our study corresponds tof/f* ;0.015, which
is well below the semidilute regime@25#. This suggests tha
the decrease of the fast relaxation time have little or no c
tribution from the density effect arising from the screening
pure excluded volume effects. We believe that the domin
reason for the decrease in relaxation times with increasinC
in a knot is primarily the increase in the entanglement effe
among the segments. For knots with largerC, this entangle-
ment effect is stronger and the knot can be roughly viewed
a cross-linked network~but the crossings are not fixed! and
this network becomes stiffer for knots with more essen
crossings. The relaxation time reflects the global elastic
sponse time scale of the knot.

It is worth noting that most of the equilibrium physic
properties, such as equilibrium sizes@17# and autocorrelation
decay times, self-diffusion coefficients. etc., of a knot, va
more or less monotonically withC and could not distinguish
different knot groups, with the only exception known so f
is the geometrical quantity of the mean writhe number@20#.
On the other hand, the equilibrium relaxation time is not ve
o-

.

.

.

o

A.

-

02180
-
f
nt

ts

s

l
e-

y

r

y

sensitive to the local topological details of the knot a
hence different knot types with the sameC have close relax-
ation times. Only by cutting the knot and releasing the stro
topological constraints, will such a classification into diffe
ent knot groups emerge@17,18#. One can imagine that by
cutting the knot and relax to the linear free chain, the ch
releases some sort of free energy that we call ‘‘topologi
free energy,’’ since its dominant contribution comes fro
topological interactions. By cutting the knot, the topologic
free energy is then dissipated by Brownian-type motions
some characteristic nonequilibrium relaxation time scale.

In this paper, we only consider the transport of a sing
knotted polymer in good solvents; on the other hand,
transport dynamics of knots in a dense medium will stron
affect the conformation of the knot and thus couple with t
topological interactions. Such a situation will occur in e
periments of gel electrophoresis of knotted molecules.
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