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Dynamics of polymer knots at equilibrium
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The relaxation and diffusion dynamics of knotted polymers at equilibrium under good solvent conditions are
investigated by dynamic Monte Carlo simulations. Prime knots of chain lengths Np-240 monomers and
knots up to 20 essential crossings are studied. The relaxation dynamics of the prime knots at equilibrium do not
display the classification into group as in the case of the nonequilibrium relaxation of cuf Rhgts Rev. E
58, R1222(1998; Phys. Rev. Lett87, 175503(2001)]. Furthermore, the time autocorrelation functions for the
radius of gyration of the nontrivial knots can be fitted by a sum of two exponential decays of long and short
characteristic relaxation times. These two relaxation times decrease with the number of essential c€ossings
The faster relaxation follows the Rouse behavior and scalé$'4$” and its dependence db is consistent
with the scaling analysis using the blob picture. The mean-square displacement of the center of mass of the
knots obeys the free diffusion behavior compatible with the Rouse dynamics. The diffusion coefficients of the
knots, D~1/N for large N, but D decreases for knots with increasiy These results are analyzed using
scaling theories and discussed in terms of topological interactions in the knots.
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I. INTRODUCTION pected to hinder their relaxation motions. It is interesting to

probe such pure topological effects and clarify its effects on

Recent advances in single-molecule experimental techthe dynamical properties of knotted molecules. However, in
nigues in chemical and biological systems enable the direatal experiments, these topological interactions often mix up
manipulation of naturally occurring knotted DNA—4] as  with other interactions such as energetic interaction among
well as artificially tying up a molecule into a knf#]. Also, monomers and solvent or the intrinsic bond energies or
Type Il topoisomerases can affect the global topology of ringchemical properties of the ring molecule. Thus it is desirable
DNA [6,7] and the reaction rate is believed to be governedo investigate the dynamics of knotted polymers in a com-

by the intrinsic relaxation dynamics of the knotted DNA. It puter simulation, which is dominated by the topological in-
urges for some fundamental understanding of the physicakractions.

and dynamical properties of knotted chain molecules. On the o, previous study on theonequilibrium relaxation

other hand, the breakthrough of Jones polynomi8lsin  times of prime knots revealed that knots are naturally classi-

knot theory, has boosted much research interest in the Cofg into group according to their characteristic times to untie

nection between physics and knot theory, especially on spihen the well-equilibrated knot is cut. The Alexander poly-

models in statistical mechani¢9,10] for the last decade. n?mials of the knots within a group can be parametrized in
{

AIso,. there have be_en some advances n the EMETgence plo same way17,18. It is of interest to see whether such
knotlike structures in quantum and classical field theories

recently[11,12]. Even then, the connection tends to be math_classification will emerge ir'1.th.e dynamical properties of
ematical and abstract, still far from direct physical observa-these kpots a!t thermal eqw!lbrlum. Using dynamic qute
tions. It is clear that the topological constraint in a knotted“a/l0 simulations, we consider knots formed by flexible
molecule dictates the important physical and geometricaP®lYMers in good solvent conditions. Only excluded volume
properties of the knof13—27. In a similar way, the en- effects and t_he topological constralnt_ of no segment crossing
tanglement effects in a dense polymer melt give rise to thé&'e present in our systems. Topological effects are expected
topological interactions that govern the dynamics in poly-tO dominate in the dynamical properties in knots. Previous
meric systems. The constraint of no chain crossing and ngcaling prediction for the dependence of the relaxation times
chain breaking in a knot restricts the number of possibleon the essential crossing numb@@) of the knot was not
conformations that can only appear or disappear via continusatisfactorily verified in the simulation data in Re16]. In
ous chain deformations. Topological interactions are easy tthis paper, we reexamine the relaxation times of the knots,
picture but hard to quantify, yet they are robust and havesspecially focusing on its dependence ©nby simulation
good memories, even prehistoric men used knots as mnend scaling calculations. Various ring polymers as listed ex-
monic devices to record events and numbers before the irplicitly in Table | are studied. Section Il gives some basics
vention of symbols/words. These topological interactions ar@bout knots and describes the bond-fluctuation model and
manifested most prominently in knots, and knotted polymersimulation details. The simulation results for the autocorre-
are convenient systems for studying them. The fact thalation functions and diffusion dynamics are presented in Sec.
closed ring polymers possess topological memory is exHl. The data of the equilibrium relaxation times and diffu-
sion constants are discussed by scaling analysis in terms of
the blob picture and inflated tube model, respectively. Fi-
*Email address: pylai@phy.ncu.edu.tw nally, Sec. V gives some outlook and discussions.
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TABLE I. Values of the exponenta of various prime knots. the torus knots (35,7:,...), the even twist knots
(4.,6,,8;, ...) and the oddwist knots (5,7,,9,, ...) are
Knot Cy « investigated in this work. These knots have been shown to
3, 2.01+0.08 classify into the above three groups in terms of their non-
4, 237401 equilibrium relaxation time$17,18. The numbering of the
5, 297+ 0.1 prime knots in this study follows that of Alexander and
5, 2 26£0.2 Briggs[29] for knot up toC=9 and from Conway30] for

knots withC=10. ForC=11, a straightforward generaliza-
tion in each knot group is used.

The bond fluctuation modgBFM) for macromolecular

Il. MODEL AND SIMULATION DETAILS chaing[ 23] is_em_ployed for_ the p_olymer_ knots. The BFM for
polymer chains in three dimensiof®4] is a coarse-grained

The conventional nomenclature of a knot is denoted byattice model in which each effective monomer occupies a
C whereC is the number of essential crossir{@6] in any  cube of eight sites in a simple cubic lattice. A polymer chain
planar projection, i.e., the minimum number of crossings nds represented by a sequence of successive monomers linked
matter how one tries to untie the knot without cutting it, andby effective bonds taken from a set of 108 allowed
K is just a label to distinguish topologically different knots. bond vectors from the set of all permutations obtained
Two knots are topologically the same if they can be transby symmetry operations of the cubic latticéP(2,0,0),
formed into each other with only three kinds of ReidemeisterP(2,1,0), P(2,1,1), P(2,2,1), P(3,0,0), P(3,1,0)}. Here,
moves[26]. Prime knots up to ten essential crossings wereP(2,0,0) denotes all the possible permutations of the bond
listed by Tait and Little[27,28 in the 19th century. Prime vectors generated frorf2,0,0, which include the six bond
knots are knots that are not composed of simpler knots. Trarectors 2,0,0), (0+2,0), and (0,0:2). The bond
ditionally, knots are just simply arranged in an increasinglengths in the BFM can range from 2 310 in units of
order ofC in usual knot tables or knot diagran@is a fairly  |attice spacing. Hard-core self-avoiding interaction between
weak topological invariant and can have an exponentiallymonomers is imposed by the requirement that no two mono-
large degeneracy whe@ is large. For instance, there are mers can share a common site. The dynamics of this model
seven knots with seven crossings and 9988 knots with 13re introduced by choosing a monomer at random and at-
crossings. Advances had been made in classifying knots angmpting to move it by one lattice spacing in one of six
topological invariant§8—10. More sophisticated topologi- randomly selected directions:x, *y, *z. This move at-
cal invariants such as Alexander, Jones polynomials, angempt will be accepted if the following conditions are satis-
Vassiliev invariant can distinguish knots much better, butied: (1) self-avoidance is obeyed?) the new bond vector
there is still no one-to-one correspondence for more complextill belongs to the allowed set. Because of the requirement
knots. For instance, ;5and 1Qs, have the same Alexander that the bonds must stay in the allowed set, no two bonds
polynomial. The search for an ultimate invariant for a one-will ever intersect each other in the course of the motion;
to-one classification of all the knots remains one of the funhence, the entanglement effect is taken care of automatically.
damental challenges in mathematical knot theory. The equiBecause of its more realistic and simple moves, this model is
librium dynamics of three knot grougsee Fig. 1, namely,  suitable for the study of dynamical properties of polymers.
Also, it has been established that this model is in agreement
with the Rouse model in the dilute limit or with the reptation
model for long chains in entangled me[t&5] in three di-
mensions. The polymer chain in the BFM has a wide spec-
trum of bond angles and bond lengths as compared with
conventional lattice polymer models. It has many features of
an off-lattice model but at the same time has the advantage
of lying on a lattice in which a fast computing algorithm can
be implemented. Solvent molecules hit the monomers due to
thermal motion and give rise to solvent viscosity and this
effect is modeled as the random Monte Carlo trials moves of
the monomers. It is well established that polymers give rise
to entropic elasticity{31] and the topological contraint and
entanglement in the knot restrict its conformation and hence
affect the global stiffness of the knot.

A single ring polymer chain consists ®f monomers is
placed inside a cubic box with periodic boundary conditions
imposed in all three directions. There are only two basic
interactions in our model: the first is the excluded volume

FIG. 1. Knot diagrams for various knot groups in this study. Theeffects between the monomers which can be thought of as a
torus knots (3,5,,7;, ...), theeven twist knots (46,,8;,...),  knot having a finite cross-section thickness; the second being
and the odd twist knots (57,,9,, ...). the prohibition of any segment crossing in the course of the

6, 2.58+0.1

2 2 2
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FIG. 2. Snapshots of the equilibrium configurations of an un-
knot 0, (left) and aC=18 even twist knot.

dynamics. It is clear that the latter interaction is of strong
topological nature which guarantees that the initial knot will
remain of the same type. Different prime knots, mostly of
lengths N=180 and up toN=240, of the torus knots
(34,51,74, . ..),even twist knots (4,6,,84, .. .) and odd
twist knots (3,,5,,7,, . ..) areinvestigated. We have mea-
sured the equilibrium average contour length of these prime
knots, they are all of the same length as the linear free chain
within 0.8% indicating that the knots are far away from the
tight knot limit. Initial configurations, like those shown in
Fig. 1 are prepared manually. The knot is then well equili-
brated by Monte Carlo moves for a long time, typically ten
times the equilibrium relaxation time, then ensemble aver-

ages are taken for another extended period, typical by ten
times the equilibration time.

IIl. RESULTS ON THE EQUILIBRIUM DYNAMICS 10’ &

00, ©
A3,
----- double exp. fit
single exp. fit

The dynamics in thermal equilibrium for the torus knot,
even twist knot and odd twist knot groups are monitored.
Some of the diagrams of these knots are depicted in Fig. 1.
These initially prepared knot configurations are then well
equilibrated. The snapshots of the typical configurations of
the circular unknot and th€ =18 even twist knot are shown
in Fig. 2. The knotted polymer is smaller in size as expected.
The detailed dynamics are studied by measuring the autocor-
relation function and the mean-square displacement of the
knot. Characteristic relaxation times and diffusion coeffi-
cients are then extracted from these quantities. Emphasis 0 2 40t/10460
shall be focused on the dependence of the relaxation and the

diffusion dynamics on different knot types. All times are  FIG. 3. Time autocorrelation functions for the radius of gyration

measured in units of Monte Carlo steps/mononMICS/  of various prime knots wittN=180.t is in units of MCS/monomer.

monomey, 1 MCS/monomer means on average each monoa) Agq for the torus knots 85, . . . ; (b) same aga) but for the

mer has attempted to move once. even twist knots 4,6;, ...; (c) semilog plot of the correlation
function Ag4(t) for the unknot @ and trefoil knot 3.

A. Time autocorrelation functions and equilibrium ) ) )
relaxation times whereRy is the radius of gyration of the knat; - -) denotes

o ) o ) thermal average, and tintés measured in Monte Carlo steps
The equilibrium relaxation behavior is studied through the

4 - per monome(MCS/monome). The typicalAgg(t) for vari-
measurements of the time autocorrelation of some structurgys knots are shown in Figs(e3 and 3b). The correlation

properties of the knot, such as the radius of the gyrationgynction for the unknot @ is also shown for comparison. In

which is defined as general, nontrivial knots with higher values & decay
. 2 faster. For nontrivial knots with small values 6f (such as

Arg)= <R9(t)r‘;g(0)> <2R9> , (1) 31, 4y), their initial relaxation behaviors are close to that of

(R§) —(Ry) the unknot, however, all nontrivial knots show a long time
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tail in their correlation functions. Such a long-time-scale 30 y y y v
slow relaxation suggests that topological constraint strongly 6 © 00,
hinder the relaxation of the nontrivial knots. Furthermore, R 03,57
Agrg(t) in general decays faster for nontrivial knots with E A *4,.6,8,,... 1
more crossings. To examine the relaxation behavior in a 20 o 8 5y T39 e 7]
more quantitative way, the correlation function is plotted _ ]
semilogarithmically in Fig. @). The correlation function of
the unknot Q can be very well described by a single expo-
nential decay while the other nontrivial knots, such as the F
trefoil (3;), as shown, display a rather clear separation of a ’ @’Eog,g,u,
short time scale decay and a long time scale decay. The C
Agg(1) for the nontrivial knots can be fitted quite well by a 0.0 L . . . \ ]
sum of two exponential decays as 0 5 10 15 20 25

@

T, /10"

Argdt)=bexp—t/r)+(1-b)exp(—t/r,),  (2)

where 75 and 7, are the short and long characteristic relax- F 2(3)' ;ﬁ' ®)
ation times, respectively, arfais the relative weight of the i ! ’
shorter decay. The separation of two distinct time scales in I /
equilibrium relaxation in knots has also been observed pre- 10° ¢ ' §
viously by Quake[16] who considered 3 44,6;,8;, and o f
10, knots by using another polymer model. By fitting = | /
Agg(1)’s for different knots ofN =180, the values ofs and
7, are extracted. For the unknot, the relaxation is almost a 2 ;
single exponential sincé~0.1 only. For other nontrivial . o
knots, although the relaxation behavior is mostly dominated . 8
by the shorter relaxationb>0.5 in most casgsthe relax- 3 / )
ation changes appreciably to the longer relaxation at later 10 10° 10°
times. Typically,7, is ~10-30 times larger than for non- N

mv'll'ari k?OttS W|tf|1 Cit_lo. i | b FIG. 4. (a) The half-decay timd ;,, of Ag((t) for various prime
e faster relaxation time scale can be measuretd byr knots of lengthdN=180. (b) Log-log plot of T,, as a function of

e_“’en more cpnver_ﬂently and z_accurately by the half'de‘:a\'he knot length for the unknot and nontrivial knots. The slope of the
time T, that is defined as the time needed Ay to decay  gaghed straight line is-2v~2.2.

to 3. As illustrated in Fig. &), T4, lies well within the fast

time scale regime and reflects mainly the fast relaxation of

the knot. Figure @) displays the half-decay times as a func- Fig. 5b). 7, varies somewhat irregularly wit@ even within

tion of C for various prime knots in different groups. All the a group, especially for a smaller value Gf However, 7,

data fall roughly on the same curve suggesting that the fasthows an average decreasing trend with increaSing
relaxation time is mainly determined by the essential cross- The nature of these fast and slow relaxation behaviors can
ing number of the knot. However, the detailed topology ofbe further explored by considering the variations of these
the knot still has some observable effect on the relaxatiomelaxation times with the length of the knot. To examine the
times, since even for knots with the sariethe 3;,5;,7;  chain length dependence, the autocorrelation functions of the
group always has a slightly largér,,, than the 5,7,,9,  knots O, 3;, 4;, 5;, 5;, and 6 up to N=240 are mea-
group. ForC> 15, the value ofT,,, saturates to some mini- sured. The values of,,, and 7, are then extracted and their
mal value. Our data for the fast relaxation times do not agre®ariation withN are shown in Fig. é) on a log-log plot. The
with the theoretical result obtained by Quakks] which  fast relaxations show a very nice Rouse relaxation behavior
predicted the relaxation time scales asN'*¥2*C23-2»  with T;,~N'*2” for the unknot forN>30. For nontrivial
~N22C~9533 QOur data agree with the scaling §f¥2”, as  knots, it appears that the finité-correction to theN**2*

N becomes large, but deviate a lot from the scalin@othe  becomes more significant for knots with higl@rHowever,
decrease oT;,, with C is much strongefas compared with in the largeN limit, i.e., when the knots are far from being
Quake’s resujtfor small values ofC and seems to saturate to tight, the values ofTy, for different knots converge to the
some constant for larger values ©f Furthermore, this scal- same value. On the other hand, the slow relaxation times of
ing exponent inC was also not satisfactorily verified by the the nontrivial knots also suggest a power law with~N¢,
simulation data in Ref.16] in which knots up to ten cross- with a knot-type-dependent exponent The values ot for

ings were studied and fast relaxation time were fitted with ghese knots are displayed in Table I. The exponent of the
variation of~C~%7. A plausible cause of this discrepancy of slower relaxation timex increases withC in general. Al-

the scaling prediciton with the simulation data is further ex-though the exponenis show some dependence on the knot
plored in Sec. IV. The longer relaxation times for varioustype, their values are only somewhat greater that2l
knots in three knot groups are plotted as a functiorCah =2.2 suggests that the overall equilibrium relaxation picture
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FIG. 5. (@) The slower relaxation times, , in units of MCS/ FIG. 6. Mee_m-squa_lre displacc_ement of the center of mass of the
monomer, as a function d for various knots(b) Log-log plot of !mot asa function of time for various knots of lengtiis-180.t is
7, as a function of the knot lengths. The straight lines are best fitd Units of MCS/monomerta) Linear plot. (b) Log-log plot.
from which the values of the exponentare obtained.

) B 2
D Iim([Rcm(t) 6tRcm(0)] ) @3

t—soo

of the nontrivial knots can be approximately described by the
Rouse model with some corrections. Presumably, such cor-

rection originates from the topological constraint of the es— 4 is plotted against in Fig. 7(a) for various knots.D

sential crossings within the nontrivial knot. shows a general decreasing trend with increagirand also
The general trend of decreasing of both fast and slowg ot sensitive to the knot types. The diffusion behavior can
relaxation times withC indicates that more complex knots ¢ rther pe explored by examining the dependencl ai N
respond faster. This is due to the fact that more complexc shown in Fig. () for the unknot and some nontrivial
knots are in general more compact and exhibit stiffer elaSti(knots. The diffusion coefficient of the unknot shows a very

behavior. The latter properties have also been observed -« 1N Rouse behavior. while for the,3and 4;, such a I
our recent simulation studiefl9] on the deformation of apavior is also observed fo¢t>30. ForN<60, the values

polymer knots. of D are smaller, this is due to the fact that when the knot is
tight and the local density is higher, the local segment motion
of the knot may crossover to some kind of creeping motion

) . o . in a tube, or quasireptation behavior. However, the values of
To investigate the diffusion transport dynamics of knottedp for different knots approach the same value in the laige

polymers, the mean-square displacement of the center-Ofimit, thus the self-diffusion behavior follows the Rouse dy-
mass positionR.,, of the knot is monitored. Figure 6 show namics for knots in the asymptotic long chain limit.

the mean-square displacements of different knots as a func-
tion of time. The mean-square displacement varies linearly
with t indicating a free diffusion behavior for both the unknot
and nontrivial knots up to 20 crossings. However, the diffu- In this section, we attempt to understand the simulation
sion is slower for knots with more essential crossings. Theesults in terms of scaling concepts in polymer physics.
self-diffusion coefficient is extracted from the mean-squareSince a detailed mathematical description of knots is still at
displacement data as the level of classification, one is still far away from any

B. Mean-square displacement and diffusion coefficients

IV. SCALING ANALYSIS
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o _ FIG. 8. (a) Scaling plot ofT;,,/N**2" versus(Ry)/N" for the
FIG. 7. (a) Diffusion constaniD versusC for various knots of  unknot and nontrivial knotgb) Scaling plot ofT;,,/N**2" versus

lengthsN=180. (b) Log-log plot of D versusN for the unknot and  C for nontrivial knots. The dashed curve shows €47 behavior.
nontrivial knots. The dashed straight line indicates a slope bf

detailed theory on the physical properties of knots and th&honomer sizeG is some scaling function of the strain de-
scaling approach remains to be the most useful theoreticdprmation of the polymer. Thus the above scaling form sug-
tool at present. Using the blob picture in polymer, whichgests that the fast relaxation time scale is basically the elastic
account for the excluded volume interactions among théesponse of the knot. The extra stiffness of the knotted poly-
chain segments, the scaling form for the fast relaxation timéner as compared to the free linear polymer is given by the
is derived under suitable assumptions. Furthermore, the exttapological constraint of the formation of a knot, which is in
monomer-monomer friction in a knotted polymer is takenturn predominantly provided by the entanglement effects
into account in the maximally inflated tube model and theamong the chain segments. Furthermore, the increase in ex-
scaling behavior of diffusion coefficient can be obtained. Thecluded volume interactions in a knot arises fundamentally
value of the self-avoiding walk exponentis taken to bev  from the topological constraint of maintaining the knot to be

=3/5 throughout the scaling analysis. of the same type which forces the polymer to remain
strongly entangled. From our data in Figag G(x) is an
A. Scaling of T4, increasing function, this can be compare with the result of

the period of oscillation of a solid elastic sphé82] that is

. 1420 . . . proportional to the radius of the sphere. For a nontrivial

for iffrent knot ypes orignates from the difierent fas; las-PiMe knot ofN monomers and wiiC essential rossings,
yp 9 on average the first monomer will be close to tiN/C)th

tic response times of the knots._Therefore,_ we plot in I:'g'monomer due to the topological constraints and hence can be
8(a) the scaled fast relaxation time of various knots as a

function of the mean radius of gyration in units KFf. The modeled as a blob of witN/C segments. Exploiting the idea

. 4 . . of the blob concept in polymer physics, the length scale of
data show a rough scaling behavior suggesting the followmghe blob size ist J)(N/CF))V the a?/eXage number%f blobs is
scaling form: b '

C. The relaxation time within a blob scales as,
Tio= NV 2'G((Ry)/Re), 4  ~(N/C)'*?"and forC>1, the relaxation of the whole knot

can be viewed as the relaxation Gf self-avoiding blobs,
whereRg=aN?" is the free Flory radius of the polymer under thus the time needed for the relaxation to cover a region
no topological constraint, i.e., a free linear chain arid the ~ composed of a random walk & blobs is

Our data, such as in Fig(l#) suggest the fast relaxation
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Ty~ CY #7p~NT2'=N15 for C>1, (5 70
which is independent ofC. On the other hand, foC 60 a A
~0O(1) the knot no longer has the configuration of a self- s
avoiding walk of blobs but rather consists of a small number sl el E
of blobs that are more or less space filling, then the time E r D,D’
needed for the relaxation to propagate through the knot is of = 2 = N=90
the order — 40 2 W 0 120 B
r : 4 180 ]
T1/2~C7_b~N1+2VC—2V%N11/5c—6/5 for C~O(1)( ) 30 M + 240 4
6 ]
Again the above two scalings can be summarized in the fol- s ol 02 03 04
lowing scaling form: 4/3/( )
<R >N
T1,=N'"?"g(C), (7 P £

FIG. 9. A plot of 1/ON) versusp*¥/((R,)N) for various types

~ S ~C2v ~ d K
whereg(C) cqnstant fo@>1 and~C for_C O_(l)' of knots of different lengths. The dashed curve denotes the linear
The above scaling form is checked by our simulation datgenavior given in Eq(9).

and the result is shown in Fig.(l® which should be com-
data indeed settle to a constant while for smaller valués, of fiction coefficient and¢=¢,/d? for some characteristic
the data for different values & do fall roughly as~C~ " monomer-monomer frictionz,. Following the idea on

(dashed curve There are some scattering in the scaled datahe construction of the maximally inflated tube, Grosberg
which is due to the correction of finits-in the exponentin ot g1. obtainedL~Rgp2’3 and dNRgpleNvafS/S' Then

N. It should be noted that the scaling form in E@ s L =N&+ N~ "p®5 and hence
consistent with the scaling forms in Eq&l) and (7); this

suggests tha{R,)/N"=f(C) for some functionf that de- kT p*/3
creases wittC andf(C)~ const forC>1. This scaling be- D NE+ R_go- ©)
havior of (Ry) is also observed in our data that will be re- ¢
ported elsewherg33,34. On averagep varies linearly withC and the values op for
various prime knots in their ideal forms have been calculated
B. Maximally inflated knot and scaling of D in Ref. [4]. By fitting the values ofp with C, we obtainp

=3.78C+ 6 and the values gf for all the knots in this study

The relaxation motion of monomers in a knot can be pic_are then calculated using this linear relation. Figure 9 plots
tured as confined inside an imaginary inflated knotted tube 9 -9 P

; 4/3 ; ; ;
or the “ideal form’ [15] of the knot. Grosbergtal. [21] et} ARTEY KD 1B KR U R
introduced a new topological invariaptdefined as the as- gins, P

: . straight line verifying the scaling result in E(). One re-
Eg:;{n:g[r'(;f iftsthne] aliir:ggﬂw_)ir:(f)l ;Pe% (llgr:;ete(d) of a knotted covers the standard Rouse behaviobof 1/N in Eq. (9) for

knots with p<N (i.e., for knots with smaller values o)

p=L/d. (8)  which agrees with the observed behavior in Fig)7In fact,

the reIationT1,2~<R§)/D does not hold for polymer knots,

The diffusion coefficient of the knot can be calculated ac-but was used in Refl16] for the derivation of the scaling of
cording to the Einstein relatiol =kgT/u,, wherekg is the  the relaxation times and hence lead to the disagreement in
Boltzmann’s constant and;, is the total friction coefficient. the C dependence with the simulation data. In genefal,
In Rouse mode[35,36, the friction coefficient is propor- <(R§>/D as indicated by our simulation data. This is be-
tional to the number monomehsin the macromolecule, i.e., causeT,, is the fast relaxation time of the knot that reflects
N¢, whereé is the monomer-solvent friction coefficient. For the time scale of global elastic response, WK‘F@/D is the
a linear polymer chain, the monomers tend to avoid eaclime scale originated from the frictional drag experienced by
other in good solvents and the probability of two monomershe knot segments, which has a stronger dependence on the

in direct close contact is small. However, for knotted poly- detailed topology and hence is in general slower thigg.
mers, monomers are forced to be in close contact because of

the topological constraint. During the relaxation process,
monomers will slide onto each other, and extra friction re-
sults. The collision probability among the monomers is It appears that the decrease in relaxation times With
greatly increased as the number of crossings increases. Toaybe related to the increase in local density in the interior
estimate this extra internal friction, the monomer-monomeiof the knot. The interior segments in the knot experience a
friction coefficient is assumed to be proportional to the ratiolocal volume fractionp=Na®*/(Ry), and hencep increases

of length to cross-section area of the maximally inflated knotwith C. For a system with many linear polymers, it is well-
[17]. Thus the total friction coefficient can be expressedknown that the relaxation behavior follows the Rouse behav-

V. DISCUSSIONS AND OUTLOOK
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ior in the dilute regime foh< ¢p*, where¢* is the volume sensitive to the local topological details of the knot and
fraction for polymer overlapping becomes significant. Thishence different knot types with the sai@éhave close relax-
cross-over volume fraction scales as¢*~N'"3" and ation times. Only by cutting the knot and releasing the strong
¢>/¢>*~N3Va3/<Rg>3. From our data in Fig. 8, the most topological constraints, will such a classification into differ-
dense case in our study correspondgpte* ~0.015, which ~ €nt knot groups emergl7,18. One can imagine that by
is well below the semidilute regimi@5]. This suggests that cutting the knot and relax to the linear free chain, the chain
the decrease of the fast relaxation time have little or no conf€/€ases some sort of free energy that we call “topological
tribution from the density effect arising from the screening of T€€ €nergy,” since its dominant contribution comes from
pure excluded volume effects. We believe that the dominan}l‘)pmog'Cal interactions. By cutting the kr_lot, the topol_og|cgl
reason for the decrease in relaxation times with increaSing ree enirgy 'f th?n d|53|pat$% t.)y Brorvma:n-tyge motlolns n
in a knot is primarily the increase in the entanglement effect$OMe characterstic nonequilibrium refaxation ime scale.
among the segments. For knots with lar@erthis entangle- In this paper, we only consider the transport of a single-

ment effect is stronger and the knot can be roughly viewed aEnOtted polymer_ in good sqlvents; on the _other_hand, the
a cross-linked networkbut the crossings are not fixednd transport dynamics of knots in a dense medium will strongly

this network becomes stiffer for knots with more essentialaﬁeCt the conformation of the knot and thus couple with the

crossings. The relaxation time reflects the global elastic ret_opploglcal interactions. Such a situation will occur in ex-
periments of gel electrophoresis of knotted molecules.

sponse time scale of the knot.

It is worth noting that most of the equilibrium physical
properties, such as equilibrium siZd¥] and autocorrelation
decay times, self-diffusion coefficients. etc., of a knot, vary This research was supported by the National Council of
more or less monotonically wit@ and could not distinguish Science of Taiwan under Grant No. NSC 90-2118-M-008-
different knot groups, with the only exception known so far037. Computing time provided by the Simulational Physics
is the geometrical quantity of the mean writhe numfa]. Lab., National Central University is gratefully acknowl-
On the other hand, the equilibrium relaxation time is not veryedged.
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